
Nesterov-based Alternating Optimization for

Nonnegative Tensor Completion: Algorithm and

Parallel Implementation

Georgios Lourakis and Athanasios P. Liavas

School of Electrical and Computer Engineering, Technical University of Crete, Greece

e-mail: {glourakis, aliavas}@isc.tuc.gr

Abstract—We consider the problem of nonnegative tensor
completion. Our aim is to derive an efficient algorithm that is also
suitable for parallel implementation. We adopt the alternating
optimization framework and solve each nonnegative matrix
completion problem via a Nesterov-type algorithm for smooth
convex problems. We describe a parallel implementation of the
algorithm and measure the attained speedup in a multi-core
computing environment. It turns out that the derived algorithm
is an efficient candidate for the solution of very large-scale sparse
nonnegative tensor completion problems.

Index Terms—tensors, nonnegative tensor completion, optimal
first-order optimization algorithms, parallel algorithms.

I. INTRODUCTION

Tensors have recently gained great popularity due to their

ability to model multiway data dependencies [1], [2], [3], [4].

Tensor factorizations into latent factors are very important

for numerous tasks, such as feature selection, dimensionality

reduction, compression, data visualization, interpretation and

completion, and are usually computed as solutions of opti-

mization problems [1], [2]. Alternating Optimization (AO),

All-at-Once Optimization (AOO), and Multiplicative Updates

(MUs) are among the most commonly used techniques for

tensor factorization [2], [5].

The problem of tensor completion arises in many modern

applications, such as machine learning, signal processing, and

scientific computing, where our aim is to estimate missing

values in multi-way data, using only the available elements and

structural properties of the data. Matrix completion problems

are closely related to recommendation problems, which can

be viewed as completing a partially observable matrix whose

entries are ratings. Matrix factorization was empirically shown

to be a better model than traditional nearest-neighbour based

approaches in the Netflix Prize competition [6]. In many

real world applications, when nonnegativity constraints are

imposed to the factorization/completion, the results have more

natural interpretations. In this work, we focus on multiway

data and Nonnegative Tensor Completion (NTC). Similar to

the matrix case, we employ factorization techniques to provide

accurate recommendations. Other approaches for contextual

recommendations use context as a means to pre-filter or post-

filter the recommendations made [7].

Recent work for constrained tensor factorization/completion

includes, among others, [8], [9], [10], and [11]. In [8], several

Nonnegative Tensor Factorization (NTF) algorithms and a

detailed convergence analysis have been developed. A general

framework for joint matrix/tensor factorization/completion has

been developed in [9]. In [11], the authors consider constrained

matrix/tensor factorization/completion problems. They adopt

the AO framework as outer loop and use the Alternating

Direction Method of Multipliers (ADMM) for solving the

inner constrained optimization problem for one matrix factor

conditioned on the rest. The ADMM offers significant flexi-

bility, due to its ability to efficiently handle a wide range of

constraints.

Recent tensor applications, such as social network analysis,

movie recommendation systems and targeted advertising, need

to handle large-scale tensors, making the implementation of

efficient parallel algorithms the only viable solution. In [12],

two parallel algorithms for unconstrained tensor factoriza-

tion/completion have been developed and results concerning

the speedup attained by their Message Passing Interface (MPI)

implementations on a multi-core system have been reported.

Related work on parallel algorithms for unconstrained sparse

tensor factorization includes [13] and [14]. Recently, the

nonnegative case of the tensor factorization problem in a

parallel environment has been addressed in [15] and [16].

A. Contribution

In this work, we focus on very large sparse NTC problems.

Our aim is to derive an efficient NTC algorithm that is suitable

for parallel implementation. We adopt the AO framework and

solve each matrix Nonnegative Matrix Completion (NMC)

problem via a first-order optimal (Nesterov-type) algorithm

for L-smooth convex problems. Then, we describe in detail an

MPI implementation of the AO NTC algorithm and measure

the speedup attained in a multi-core environment. Throughout

this work we focus on third-order tensors, but the generaliza-

tion of the results in more dimensions is straightforward. We

conclude that the proposed algorithm is an efficient candidate

for the solution of very large sparse NTC problems.

B. Notation

Vectors, matrices, and tensors are denoted by small, capital,

and calligraphic capital bold letters, respectively; for example,

x, X, and X . RI×J×K
+ denotes the set of (I × J ×K) real

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

978-1-5386-3512-4/18/$31.00 ©2018 IEEE

nonnegative tensors, while R
I×J
+ denotes the set of (I × J)

real nonnegative matrices. ‖ · ‖F denotes the Frobenius norm

of the tensor or matrix argument, I denotes the identity matrix

of appropriate dimensions, and (A)+ denotes the projection of

matrix A onto the set of element-wise nonnegative matrices.

The outer product of vectors a ∈ R
I×1, b ∈ R

J×1, and

c ∈ R
K×1 is the rank-one tensor a ◦ b ◦ c ∈ R

I×J×K with

elements (a ◦ b ◦ c)(i, j, k) = a(i)b(j)c(k). The Kronecker

product of compatible matrices A and B is denoted as A⊗B,

the Khatri-Rao (columnwise Kronecker) product is denoted as

A ⊙ B and the Hadamard (elementwise) product is denoted

as A ⊛ B. Inequality A � B means that matrix A − B is

positive semidefinite. At some points, we use matlab notation;

for example, if A is a matrix, then A(i, :) denotes its i-th row.

C. Structure

In Section II, we briefly describe the NTC problem. In

Section III, we present a Nesterov-type algorithm for the NMC

problem. In Section IV, we present the associated AO NTC

algorithm and in Section V we describe, in detail, a parallel

implementation of the AO NTC algorithm. In Section VI, we

use numerical experiments and measure the speedup of the

proposed algorithm in a parallel computing environment.

II. NONNEGATIVE TENSOR COMPLETION

Let X ∈ R
I×J×K be an incomplete tensor, and Ω ⊆

{1 . . . I} × {1 . . . J} × {1 . . .K} be the set of indices of its

known entries. That is X (i, j, k) is known if (i, j, k) ∈ Ω.

Also, let M be a tensor with the same size as X , with ele-

ments M(i, j, k) equal to one or zero based on the availability

of the corresponding element of X . That is

M(i, j, k) =

{

1, if (i, j, k) ∈ Ω,
0, otherwise.

(1)

We consider the nonnegative tensor completion problem

min fΩ(A,B,C) + λ
2 ‖A‖

2
F + λ

2 ‖B‖
2
F + λ

2 ‖C‖
2
F

subject to A ≥ 0,B ≥ 0,C ≥ 0,
(2)

where A = [a1 · · · aR] ∈ R
I×R
+ , B = [b1 · · · bR] ∈ R

J×R
+ ,

C = [c1 · · · cR] ∈ R
K×R
+ , and

fΩ(A,B,C) =
1

2
‖M⊛ (X − [[A,B,C]])‖

2
F ,

with

[[A,B,C]] =
R
∑

r=1

ar ◦ br ◦ cr .

We can derive matrix-based equivalent expressions of fΩ as

fΩ(A,B,C) =
1

2
‖MA ⊛

(

XA −A(C⊙B)T
)

‖2F

=
1

2
‖MB ⊛

(

XB −B(C⊙A)T
)

‖2F

=
1

2
‖MC ⊛

(

XC −C(B⊙A)T
)

‖2F ,

where MA, MB, MC are the matrix unfoldings of M and

XA, XB, and XC are the matrix unfoldings of X , with respect

to the first, second, and third mode, respectively.

III. NONNEGATIVE MATRIX COMPLETION

In this section, we consider the NMC problem, whose

solution will be the building block for the solution of the AO

NTC problem. Let X ∈ R
m×n, A ∈ R

m×r, B ∈ R
n×r. Also,

let Ω ⊆ {1 . . .m} × {1 . . . n} be the set of indices of the

known entries of X, and M be a matrix with the same size as

X, with elements M(i, j) equal to one or zero based on the

availability of the corresponding element of X. We consider

the problem

min
A≥0

fΩ(A) :=
1

2
‖M⊛

(

X−AB
T
)

‖2F +
λ

2
‖A‖2F . (3)

The gradient and the Hessian of fΩ, at point A, are given by

∇fΩ(A) = −
(

M⊛X−M⊛AB
T
)

B+ λA, (4)

and

∇2fΩ(A) =
(

B
T ⊗ I

)

diag2 (vec (M)) (B⊗ I) + λI. (5)

We solve problem (3) with the first-order optimal (Nesterov-

type) algorithm presented in Algorithm 1 (for a detailed

exposition of first-order optimal optimization methods see [17,

Chapter 2]).

Algorithm 1: Nesterov-type algorithm for NMC

Input: X,M∈ R
m×n, B∈ R

n×r, A∗∈ R
m×r, λ, µ, L

1 W = −(M⊛X)B

2 q = µ+λ
L+λ

3 A0 = Y0 = A∗

4 α0 = 1, l = 0
5 while (1) do

6 ∇fΩ(Yl) = W + (M ⊛YlB
T)B+ λYl

7 if (term cond is TRUE) then

8 break

9 else

10 Al+1 =
(

Yl −
1

L+λ
∇fΩ(Yl)

)

+

11 α2
l+1 = (1− αl+1)α

2
l + qαl+1

12 βl+1 = αl(1−αl)
α2

l
+αl+1

13 Yl+1 = Al+1 + βl+1 (Al+1 −Al)
14 l = l+ 1

15 return Al.

A crucial part of the algorithm is the assignment of values to

parameters µ and L. If we denote the optimal values as µ∗ and

L∗, then it turns out that µ∗ +λ and L∗ +λ are, respectively,

equal to the smallest and the largest eigenvalue of ∇2fΩ. As

the size of the problem grows, the computation of µ∗ and L∗

becomes very demanding. An approximation is to set µ = 0
and L = max(eig(BT

B)), where B
T
B is the Hessian of the

problem with no missing entries and can be easily computed,

especially in the cases of small r. We have observed that,

in practice, our choice for µ is very accurate for very sparse

problems, while our choice for L is an efficiently computed

good upper bound of L∗ (in most of our experiments, L is

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

about two times L∗). For notational convenience, we denote

Algorithm 1 as

Aopt = N NMC(X,M,B,A∗).

IV. NESTEROV BASED AO NTC

In Algorithm 2, we present the Nesterov-based AO NTC.

We start from an initial point (A0,B0,C0) and solve, in

a circular manner, MNC problems, based on the previous

estimates.

Algorithm 2: Nesterov-based AO NTC

Input: X , Ω, A0 > 0, B0 > 0, C0 > 0.

1 l = 0
2 while (1) do

3 Al+1 = N NMC(XA,MA, (Cl ⊙Bl),Al)

4 Bl+1 = N NMC(XB,MB, (Cl ⊙Al+1),Bl)

5 Cl+1 = N NMC(XC,MC, (Al+1 ⊙Bl+1),Cl)

6 if (term cond is TRUE) then break; endif

7 l = l + 1

8 return Al, Bl, Cl.

The most demanding computations during the update of

matrix Al via the N NMC algorithm are

1) in line 1 of Algorithm 1, where we compute

WA = (MA ⊛XA)(C⊙B), (6)

2) in line 6 of Algorithm 1, where we compute

ZA = (MA ⊛A(C⊙B)T)(C⊙B). (7)

Of course, analogous quantities must be computed for the

updates of Bl and Cl. In the sequel, we describe efficient

ways for the computation of WA and ZA.

1) Computation of WA: The i-th row of WA, for i =
1, . . . , I , is computed as

WA (i, :) =
(

MA (i, :)⊛XA (i, :)
)

(C⊙B). (8)

This computation involves the multiplication of a (1×JK) row

vector and a (JK×R) matrix. A direct implementation of this

multiplication may be prohibitive since, in many applications,

the values of I , J , and K may be of the order of millions or

even billions. In order to reduce the computational complexity,

we must exploit the sparsity of X .

Let nnzi be the number of known entries in the i-th hori-

zontal slice of X . Also, let these known entries have indices

(i, jq, kq) ∈ Ω, for q = 1, . . . , nnzi. When we matricize with

respect to the first mode, every known element X (i, jq, kq) is

mapped to XA (i, kqJ + jq), for q = 1, . . . , nnzi. Also, the

(kqJ + jq)-th row of the Khatri-Rao product corresponds to

C (kq, :)⊛B (jq, :). Thus, the computation of the i-th row of

WA reduces to

WA (i, :) =

nnzi
∑

q=1

X (i, jq, kq)C (kq, :)⊛B (jq, :) . (9)

2) Computation of ZA: Following similar arguments, it can

be shown that the i-th row of ZA can be efficiently computed

as

ZA (i, :) =

nnzi
∑

q=1

(

A (i, :)
(

C (kq, :)⊛B (jq, :)
)T

)

×
(

C (kq, :)⊛B (jq, :)
)

.

(10)

3) Terminating condition: We can use various termination

conditions for the AO NTC algorithm based, for example,

on the maximum number of iterations, or the relative factor

change (RFC) defined as

RFCM :=
‖Ml+1 −Ml‖F

‖Ml‖F
, for M = A,B,C.

V. DISTRIBUTED MEMORY IMPLEMENTATION

Motivated by the coarse-grained approach of [18], we

consider the implementation of the Nesterov-based AO NTC

algorithm on a linear array with Np processing elements.

1) Partitionings of the matrix factors and the tensor matri-

cizations: We partition the factor matrix Al as

Al =

[

(

A
1
l

)T
· · ·

(

A
Np

l

)T
]T

, (11)

with A
n
l ∈ R

I
Np

×R
, for n = 1, . . . , Np. We partition

accordingly the matricization XA as

XA =

[

(

X
1
A

)T
· · ·

(

X
Np

A

)T
]T

, (12)

with X
n
A

∈ R
I

Np
×JK

, for n = 1, . . . , Np.

Analogous partitions are defined for Bl, XB, Cl, and XC.

2) Data allocation and distributed memory algorithm im-

plementation: We allocate X
n
A

, Xn
B

, Xn
C

to the n-th process-

ing element, for n = 1, . . . , Np. Each processing element is re-

sponsible for the update of the corresponding part of the matrix

factors, that is, the n-th processing element computes A
n
l+1,

B
n
l+1, and C

n
l+1, for n = 1, . . . , Np. An MPI-pseudocode for

the distributed-memory implementation of the NTC is given

in Algorithm 3.

3) Detailed description of a factor update: The algorithmic

steps for the computation of Al+1 are as follows. All process-

ing elements work in parallel. The n-th processing element

uses its local data X
n
A

, as well as the whole matrices Bl and

Cl, and computes the n-th block row of matrix Al+1, An
l+1,

via the N NMC algorithm. Then, each processing element

broadcasts the part of the updated factor it has computed to

all others, via the MPI statement MPI Allgather. At the end

of this step, all processing elements possess Al+1. At this

point, we are ready to proceed to the computation of Bl+1

and then of Cl+1, completing one (outer) iteration of the AO

NTC algorithm. The algorithm continues until convergence.

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

4) Communication complexity: The communication re-

quirements of this implementation consist of one Allgather

operation per NMC, implying gathering of terms with IF ,

JF , and KF elements, per outer iteration.

We compute the communication cost during the update of

Al, C
A. We assume that an m-word message is transferred

from one process to another with communication cost ts +
twm, where ts is the latency, or startup time for the data

transfer, and tw is the word transfer time [19].

All processors learn the updated Al+1 through an

Allgather operation on its updated parts, each of dimension
I
Np

×R, with communication cost [19, §4.2]

CA =

(

ts + tw
IR

Np

)

(Np − 1) .

When we are dealing with large messages, the tw terms

dominate the communication cost. Thus, if we ignore the

startup time, the total communication time is

CA ≈ twIR.

Analogous results hold for the updates of Bl and Cl.

VI. NUMERICAL EXPERIMENTS

In this section, we present results obtained from the MPI

implementation of the AO NTC. The program is executed on

a DELL PowerEdge R820 system with SandyBridge - Intel(R)

Xeon(R) CPU E5− 4650v2 (in total, 16 nodes with 40 cores

each at 2.4 Gz) and 512 GB RAM per node. The matrix

operations are implemented using routines of the C++ library

Eigen [20]. We test the behavior of our implementation using

both synthetic and real data.

The real data we used is the MovieLens 10M dataset [21],

which contains time-stamped ratings of movies. Binning the

time into seven-day-wide bins, results in a tensor of size

71567 × 65133 × 171. The number of samples is 8000044
(99.99% sparsity). In order to distribute the known entries as

uniformly as possible across the Np processors and resolve

load imbalance issues, we first perform a random permutation

on our data. The tensor with synthetic data is of the same size

and sparsity level as the MovieLens 10M dataset, whose true

rank is R = 10 and the true latent factors have independent

and identically distributed elements, uniformly distributed in

[0, 1].
The performance metric we compute is the attained speedup.

For the computation of the speedup, we measure the execution

time for 10 outer iterations; for each NMC problem, we

perform 100 (inner) iterations.

In Figure 1, we plot the speedup for the MovieLens 10M

dataset, for Np = 1, 5, 20, 171 and rank R = 10. In Figure 2,

we plot the speedup for the synthetic data for the same number

of processors and rank as in Figure 1.

We observe that, in both cases, we attain significant

speedup. Comparing the speedup achieved with real and

synthetic data, we observe that we attain greater speedup with

the synthetic data, We attribute this phenomenon to the more

even distribution of the known entries across the processing

0 50 100 150
0

50

100

150

200

S
p
e
e
d
u
p

Number of Cores

Linear Speedup
Movielens 10M

Fig. 1. Speedup achieved for the MovieLens 10M dataset of size 71567 ×

65133 × 171 with p cores, for Np = 1, 5, 20, 171.

0 50 100 150
0

50

100

150

200

S
p
e
e
d
u
p

Number of Cores

Linear Speedup
Synthetic Data

Fig. 2. Speedup achieved for a 71567× 65133× 171 tensor with Np cores,
for Np = 1, 5, 20, 171.

elements. Thus, more advanced techniques for load imbalance

issues should be considered in the future.

In order to check the applicability of our method, we test

the accuracy of the predictions. For the MovieLens 10M

dataset, we test the completion accuracy by measuring the

relative mean squared error of 2×106 known ratings with our

predictions. For the computation of the accuracy, we use latent

factors A, B, C, computed by the AO NTC algorithm, using

a terminating condition based on the relative factor change

(RFC < 0.1); for each NMC problem, we perform 400 (inner)

iterations.

For the n-th known rating, for n = 1, . . . , 2 × 106, with

indices (in, jn, kn), we compute our prediction after rounding

the quantity
∑R

r=1 A(in, :)⊛B(jn, :)⊛C(kn, :) to the closest

integer. The relative mean squared error we achieved is 0.0033,

making our predictions quite accurate.

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

Algorithm 3: Parallel AO NTC

Input: Processing element n, for n = 1, . . . , Np, knows X
n
A, Xn

B, Xn
C, Ω. All processing elements know B0, C0.

1 Set l = 0
2 while (terminating condition is FALSE) do
3 In parallel, for n = 1, . . . , Np, do
4 Compute A

n
l+1 with N NMC. Compute line 1 and 6 of N NMC, for i = 1, . . . , I/Np and (i, jq , kq) ∈ Ω, using:

5 W
n
A (i, :) =

∑nnzi
q=1

X
n
(

I

Np
(n− 1) + i, jq, kq

)

Cl (kq , :)⊛Bl (jq , :)

6 Z
n
A (i, :) =

∑nnzi
q=1

(

Al

(

I

Np
(n− 1) + i, :

)

(

Cl (kq, :)⊛Bl (jq , :)
)T

)

(

Cl (kq, :) ⊛Bl (jq , :)
)

7 MPI Allgather(An
l+1)

8 In parallel, for n = 1, . . . , Np, do
9 Compute B

n
l+1 with N NMC. Compute line 1 and 6 of N NMC, for j = 1, . . . , J/Np and (iq, j, kq) ∈ Ω, using:

10 W
n
B (j, :) =

∑nnzj
q=1 X

n
(

iq ,
J

Np
(n− 1) + j, kq

)

Cl (kq , :)⊛Al+1 (iq, :)

11 Z
n
B (j, :) =

∑nnzj
q=1

(

Bl

(

J

Np
(n− 1) + j, :

)

(

Cl (kq, :)⊛Al+1 (iq, :)
)T

)

(

Cl (kq, :) ⊛Al+1 (iq , :)
)

12 MPI Allgather(Bn
l+1)

13 In parallel, for n = 1, . . . , Np, do
14 Compute C

n
l+1 with N NMC. Compute line 1 and 6 of N NMC, for k = 1, . . . ,K/Np and (iq , jq , k) ∈ Ω, using:

15 W
n
C (k, :) =

∑nnzk
q=1

X
n
(

iq , jq ,
K

Np
(n− 1) + k

)

Bl+1 (jq , :) ⊛Al+1 (iq , :)

16 Z
n
C (k, :) =

∑nnzk
q=1

(

Cl

(

K
Np

(n− 1) + k, :
)

(

Bl+1 (jq , :)⊛Al+1 (iq, :)
)T

)

(

Bl+1 (jq , :)⊛Al+1 (iq , :)
)

17 MPI Allgather(Cn
l+1)

18 l = l + 1

19 return Al, Bl, Cl.

VII. CONCLUSION

We considered the NTC problem. We adopted the AO

framework and solved each NMC problem via a Nesterov-type

algorithm for smooth convex problems. We described in detail

a parallel implementation of the algorithm, which attained

significant speedup. Thus, our algorithm is a strong candidate

for the solution of very large-scale sparse NTC problems.

REFERENCES

[1] P. M. Kroonenberg, Applied Multiway Data Analysis. Wiley-
Interscience, 2008.

[2] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative Matrix

and Tensor Factorizations. Wiley, 2009.
[3] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”

SIAM Review, vol. 51, no. 3, pp. 455–500, September 2009.
[4] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-

akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, 2017.

[5] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Ca-
iafa, and H. A. Phan, “Tensor decompositions for signal processing
applications: From two-way to multiway component analysis,” Signal

Processing Magazine, IEEE, vol. 32, no. 2, pp. 145–163, 2015.
[6] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel

collaborative filtering for the netflix prize,” in Proceedings of the

International Conference on Algorithmic Aspects in Information and

Management, 2008.
[7] G. Adomavicius and A. Tuzhilin, “Context-aware recommender sys-

tems,” Recommender systems handbook, pp. 217–253, 2011.
[8] Y. Xu and W. Yin, “A block coordinate descent method for regularized

multiconvex optimization with applications to nonnegative tensor fac-
torization and completion,” SIAM Journal on imaging sciences, vol. 6,
no. 3, pp. 1758–1789, 2013.

[9] L. Sorber, M. Van Barel, and L. De Lathauwer, “Structured data fusion.”
IEEE Journal on Selected Topics in Signal Processing, vol. 9, no. 4, pp.
586–600, 2015.

[10] A. P. Liavas and N. D. Sidiropoulos, “Parallel algorithms for constrained
tensor factorization via alternating direction method of multipliers,”
IEEE Transactions on Signal Processing, vol. 63, no. 20, pp. 5450–
5463, 2015.

[11] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “A flexible and
efficient framework for constrained matrix and tensor factorization,”
IEEE Transactions on Signal Processing, accepted for publication, May
2016.

[12] L. Karlsson, D. Kressner, and A. Uschmajew, “Parallel algorithms for
tensor completion in the CP format,” Parallel Computing, 2015.

[13] S. Smith and G. Karypis, “A medium-grained algorithm for distributed
sparse tensor factorization,” 30th IEEE International Parallel & Dis-

tributed Processing Symposium, 2016.
[14] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions in dis-

tributed memory systems,” in Proceedings of the International Con-

ference for High Performance Computing, Networking, Storage and

Analysis. ACM, 2015, p. 77.
[15] A. P. Liavas, G. Kostoulas, G. Lourakis, K. Huang, and N. D. Sidiropou-

los, “Nesterov-based alternating optimization for nonnegative tensor fac-
torization: Algorithm and parallel implementations,” IEEE Transactions

on Signal Processing, vol. 66, no. 4, pp. 944–953, Feb. 2018.
[16] ——, “Nesterov-based parallel algorithm for large-scale nonnegative

tensor factorization,” in 2017 IEEE International Conference on Acous-

tics, Speech and Signal Processing, ICASSP 2017, New Orleans, USA,

March 5-9, 2017. IEEE, 2017.
[17] Y. Nesterov, Introductory lectures on convex optimization. Kluwer

Academic Publishers, 2004.
[18] K. Shin and U. Kang, “Distributed methods for high-dimensional and

large-scale tensor factorization,” in IEEE International Conference on

Data Mining, ICDM, 2014, pp. 989–994.
[19] A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction to Parallel

Computing (2nd Edition). Pearson, 2003.
[20] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,

2010.
[21] F. M. Harper and J. A. Konstan, “The movielens datasets: History and

context,” ACM Transactions on Interactive Intelligent Systems (TiiS),
vol. 5, no. 4, pp. 1–19, Dec. 2015.

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

